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1. Remarks on Full Waveform Inversion (FWI)

« Full Waveform Inversion is an increasingly important technique
In the inverse seismic imaging process
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» Itis a PDE constrained optimization formulation
 Model parameters v are determined to fit data
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FWI: PDE constrained optimization

FWI. Measured and processed data is compared to a computed
wave field based on model parameters v to be determined (for
example, P-wave velocity)
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Mathematical and computational
challenges

Important computational steps
Relevant measure of mismatch (v/)
Fast wave field solver

— In our case scalar wave equation in

time or frequency domain, for example @=========-

U, = I”I’I()C)z Au, =

Efficient optimization e

— Adjoint state method for gradient
computation



2. Measures of mismatch

« We will denote the computed wave field by f(x,t;v) and the data

b t
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« The common and original measure of mismatch between the
computed signal fand the measured data g is L.,
[Tarantola, 1984, 1986]
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 \We will make some remarks on different Measures of mismatch
starting with local estimates to more global



Global minimum

» It can be expected that the mismatch functional will have local
minima that complicates minimization algorithms

» |deally, local minima different from 1M —30(2) ﬂ .
the global min should be avoided for O e
some natural parameterizations as i P
“shift” and “dilations” (f (t) = g(at - s)) ° hd i

- Shift as a function of ¢, dilation osl_ : ¢ :

as a function of x
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Local measures

In the L, local mismatch, estimators fand g are compared point
wise,

109=17 =8, =(3, |-t )f )

This works well if the starting values for the model parameters
are good otherwise there is risk for trapping in local minima
“cycle skipping”



“Cycle skipping”

« The need for better mismatch functionals can be seen from a
simple shift example — small basin of attraction

For other examples, [Vireux et al 2009]
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Global measures

Different measures have been introduced to to compare all of f
and g — not just point wise.

Integrated functions

— NIM [Liu et al 2014]

— [Donno et al 2014]
Stationary marching filters

— Example AWI, [Warner et al 2014]
Non-stationary marching filters

— Example [Fomel et al 2013]
Measures based on optimal transport (v)



Integrated functions

fand g are integrated, typically in 1D-time, before L, comparison
) 1/2
(S et =Gen )
j j
F;',j = Ek=1f(xi’tk)’ Gi,j = Ek=1g(xi’tk)’

In mathematical notation this is the H' semi-norm
Slight increase in wave length for short signals (Ricker wavelet)

Often applied to modified signals like squaring scaling or
envelope to have fand g positive and with equal integral

J=|F-G




Matching filters

* The filter based measures typically has two steps
— Computing filter coefficients K

K = argmin”K * f — g”L2

— Estimation of difference between computed filter and the
identity map.
|& -1}

* The filter can be stationary or non-stationary
 The optimal transport based techniques Does this in one step

— Minimization is of a measure of transform K or as it is called
transport



3. Optimal transport and Wasserstein metric

« Wasserstein metric measures the “cost” for optimally transport
one measure (signal) fto the other: g — Monge-Kantorivich
optimal transport measure

“earth movers distance”
In computer science
[fX) \—/9(y) \ WWWMMN

Compare travel time distance
Classic in seismology




Optimal transport and Wasserstein metric

The Wasserstein metric is directly based on one cost function

Signals in exploration seismology are not as clean as above and
a robust functional combining features of L, and travel time is
desirable

Extensive mathematical foundation
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Wasserstein distance

Wp(f’g) = (H;f f d(x’y)p dY(xvy))

XxY

yEI'C X xY,the set of product measure: f and g
[fyde=[gndy, f,g=0
X Y

W,(f.8)= (i;;f Sle-1;,, f(x)dx)

* Here the “plan” T is the optimal transport map from positive
Borel measures fto g of equal mass

 Well developed mathematical theory, [Villani, 2003, 2009]



Wasserstein distance

“distance” =
s?(mass)




Wasserstein distance

* In this model example W, and L, is equal (modulo a constant) to
leading order when separation distance s is small. Recall L, is
the standard measure



Wasserstein distance

 When sis large W, = s = travel distance (time),
(“higher frequency”), L, independent of s

« Potential for avoiding cycle skipping



Wasserstein distance vs L,
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Wasserstein distance vs L,
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Wasserstein distance vs L,
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This is the basic motivation for
exploring Wasserstein metric
3l to measure the misfit

Local min are well known problems
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Wasserstein distance vs L,
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We will see that there are
hidden difficulties in

a4l making this work in practice

Normalized signal in right frame
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Analysis

Theorem 1: W,? is convex with respect to translation, s and
dilation, a,

sz(f,g)[a,s], f(x)= g(ax—s)ad, a>0,x,sER?

Theorem 2: W,? is convex with respect to local amplitude
change, A

W (f.8)IB. f(x)=

XA, xEQ
{ 80x) ' BER Q=QUQ,

Pg(X)A, xEQ,

)L=f9ga’x/(fglgdx+[a’fgzgdx) N
(L, only satisfies 2"d theorem) = ~




Remarks

The scalar dilation ax can be generalized to Ax where Ais a
positive definite matrix. Convexity is then in terms of the
eigenvalues

The proof of theorem 1 is based on c-cyclic monotonicity

{(xj’xj)} €' 26(3@"’@) = Ec(xj,xa(j))

J

The proof of theorem two is based on the inequality

W (sf, + (1= 9)f5.8) = sWy (f,, &)+ (L =)W, (f5,8)



lllustration: discrete proof (theorem 1)

« Equal point masses then weak limit for generl theorem
alternative to using the c-cyclic propery
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lllustration: discrete proof
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Noise

« W.,2 less sensitive to noise than L,

 Theorem 3: f= g+ 0, 0 uniformly distributed uncorrelated
random noise, (f> 0), discrete i.e. piecewise constant: N
intervals

|F-¢f, =0 M, W;(f-g)=0W™"
f=(fisfors )

* Proof by “domain decomposition”
dimension by dimension and standard

deviation estimates using closed - f
1D formula




Computing the optimal transport

In 1D, optimal transport is equivalent to sorting with efficient
numerical algorithms O(Nlog(N)) complexity, N data points

W,(f.8)= [(F'()-G())dy
Fx)= [ f()dE, gx)= [ g&)dE

In as the
Hungarian algorithm are O(N?3), Alternatives: linear
programming, sliced Wasserstein, ADMM



Computing of optimal transport

For higher dimensions fortunately the optimal transport related
to [Brenier
1991, 1998]
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W,(f.8) =] [x - Vux)|, f(x)dx

det(D’(w)) = f(x)/ g(Vu(x))
Brenier map T (x) = Vu(x)

Recently there are now alternative PDF formulations



4. Monge-Ampere equation and its
numerical approximation

Nonlinear equation with potential loss of regularity

* Weak viscosity solution u if u is both a sub and super solution

det(Dz(u)) — f(x)=0, uconvex, f EC*(Q)

Sub solution (super analogous)

x €Q, if local max of u—¢, then
det(D2¢) < f(x,)

o s fr d(xy) =u(x,), d(x,) = u(x,), u
P =u(x) =9 = f /

i)




Numerical approximation

 Consistent, stable and monotone finite difference
approximations will converge to Monge-Ampeére viscosity
solutions [Barles, Souganidis, 1991]
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[Benamou, Froese, Oberman, 2014]



5. Applications to full waveform inversion

» First example: Problem with reflection from two layers —
dependence on parameters, with Froese.

« Robust convergence with direct v
minimization algorithm (Simplex)
geometrical optics and positive f, g

Offset = R-S



Reflections and inversion example
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Gradient for optimization

For large scale optimization, gradient of J(f) = W.2(f,g) with
respect to wave velocity is required in a quasi Newton method in

the PDE constrained optimization step

Based on linearization of J and Monge-Ampeére equation
resulting in linear elliptic PDE (adjoint source)

J+0J = f(f+ 5f)Hx -V(u, + 5u)H2dx
J+0f =g(V(u, +ou)) det(D’ (u, +0u))
L(v)= g(Vuf)tr((Dzuf )Y D*(v))+ det(Dzuf )8(Vu,) Vv = of



W2 Remarks

+ Captures important features of distance in both travel time and
L,, Convexity with respect to natural parameters

+ There exists fast algorithms and technique robust vs. noise
- Constraints that are not natural for seismology

ff(x)dx=fg(y)dy, f,g=0, g>0,M-A

« Normalize: transform f, g to be positive and with the same
integral



Large scale applications

Early normalizations: squaring, consider positive and negative
parts of fand g separately — not appropriate for adjoint state
technique

Successful normalization — linear
F@=(f@+o)/ [(fx)+c)dr, §x)=..

Efficient alternative to W, (2D): trace by trace W, (1D) coupled
to L, [Yang et al 2016]

Other alternatives, W,, unbalanced transport [Chizat et al 2015],
Dual formulation of optimal transport

Normalized W, + AL, is an unbalanced transport measure, A > 0



Applications Seismic test cases

« Marmousi model (velocity field)
« Original model and initial velocity field to start optimization

True velocity Initial velocity
x (km) x (km)
15 2 A X 1 1.5 2 25 3




Marmousi model

« Original and FWI reconstruction with different initializations:
W2'1 D, W2'2D, L2

True velocity
x (km)
0 05 1 15 2 25 3
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Marmousi model

* Robustness to noise: good for data but allows for oscillations in
“optimal” computed velocity, numerical M — A errors

 Remedy: trace by trace, TV - regularization




Marmousi model

Robustness to noise: good for data but allows for oscillations in
“optimal” computed velocity, numerical M — A errors

Remedy: trace by trace, TV - regularization




BP 2004 model

« High contrast salt deposit, W, - 1D, W, - 2D, L?

True velocity Initial velocity
x (km) x (km)
0 1 2 3 4 5 6 0 1 2 3 4 5 6
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Camembert

True velocity

Initial velocity
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W, example

« Example below: W, measure and Marmousi p-velocity model
[Metivier et. al, 2016]

 Similar quality but more sensitive to noise and # L, when f= g
» Solver with better 2D performance
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Remarks

Troubling issues

— Theoretical results of convexity based on normalized signals
of the form squaring etc. but not practically useful
(squaring: not sign sensitive, requires compact support and
problem with adjoint state method)

— The practically working normalization based on linear
normalization does not satisfy convexity with respect to shifts



Remarks

Linear scaling: misfit as function of shift, Ricker wavelet
Conventional L2 W2, p(x)=ax+b

o © o o o v v

-2 -1 0 1 2 -2 -I1 0 1 2
Shift Shift

Function of velocity parameters: v = v+ az [Metivier et. al, 2016]

L2 misfit W2 misfit




Remarks

New and currently best normalization

f f £ r, - >0
f(x)=f(X)/ff(x)dx, f(x)= _{(X)+c X
c exp(cf(x), x<O0

Good in practice — allows for less accurate initial mode than
linear scaling

Satisfies our theorems /|
for c large enough




6. Conclusions

Optimal transport and the Wasserstein metric are promising
tools in seismic imaging

Theory and basic algorithms need to be modified to handle
realistic seismic data

Ready for field data, [PGS, SEG2017, North Sea]



