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 “Background: matching problem and technique” 



1. Remarks on Full Waveform Inversion (FWI) 

•  Full Waveform Inversion is an increasingly important technique 
in the inverse seismic imaging  process 

•  It is a PDE constrained optimization formulation 
•  Model parameters v are determined to fit data 

min
m(x )

ucomp(m)−udata A
+λ Lv

B( )



FWI: PDE constrained optimization 

•  FWI: Measured and processed data is compared to a computed 
wave field based on model parameters v to be determined (for 
example, P-wave velocity) 

min
m(x )

ucomp(m)−udata A
+λ Lv

B( )
•  || . ||A measure of mismatch 

–  L2 the standard choice 
•  || Lc ||B potential regularization term, 

which we will omit for this presentation 
•  at the surface 

Over determined 
boundary conditions 

at the surface 



Mathematical and computational 
challenges 

•  Important computational steps 
•  Relevant measure of mismatch (✔) 
•  Fast wave field solver 

–  In our case scalar wave equation in 
time or frequency domain, for example 

•  Efficient optimization 
–  Adjoint state method for gradient 

computation 
  

utt =m(x)
2Δu,



2. Measures of mismatch 

•  We will denote the computed wave field by f(x,t;v) and the data 
by g(x,t), 

•  The common and original measure of mismatch between the 
computed signal f and the measured data g is L2,         
[Tarantola, 1984, 1986] 

•  We will make some remarks on different Measures of mismatch 
starting with local estimates to more global 

ucomp(x, t;m) = f (x, t;m), udata (x, t) = g(x, t)

min
m

fm − g L2



Global minimum 

•  It can be expected that the mismatch functional will have local 
minima that complicates minimization algorithms 

utt =m
2uxx, x > 0, t > 0

u(0, t) = u0 (t)→ u = u0 (t − x /m)

•  Ideally, local minima different from 
the global min should be avoided for 
some natural parameterizations as 
“shift” and “dilations” (f (t) = g(at - s)) 

•  Shift as a function of t, dilation 
     as a function of x 



Local measures 

•  In the L2 local mismatch, estimators f and g are compared point 
wise,  

•  This works well if the starting values for the model parameters 
are good otherwise there is risk for trapping in local minima 
“cycle skipping” 

 

J(v) = f − g
L2
= f (xi, t j )− g(xi, t j )

2

i, j∑( )
1/2



“Cycle skipping” 

•  The need for better mismatch functionals can be seen from a 
simple shift example – small basin of attraction 

•  For other examples, [Vireux et al 2009] 

L2
2 

Shift or displacement “Cycle skipping”  
Local minima 



Global measures 

•  Different measures have been introduced to to compare all of f 
and g – not just point wise. 

•  Integrated functions 
–  NIM [Liu et al 2014] 
–  [Donno et al 2014] 

•  Stationary  marching filters 
–  Example AWI, [Warner et al 2014] 

•  Non-stationary marching filters 
–  Example [Fomel et al 2013] 

•  Measures based on optimal transport (✔) 



Integrated functions 

•  f and g are integrated, typically in 1D-time, before L2 comparison  

 
•  In mathematical notation this is the H-1 semi-norm 
•  Slight increase in wave length for short signals (Ricker wavelet) 
•  Often applied to modified signals like squaring scaling or 

envelope to have f and g positive and with equal integral 

J = F −G
L2
= F(xi, t j )−G(xi, t j )

2

i, j∑( )
1/2
,

Fi, j = f (xi, tk ),k=1

j
∑ Gi, j = g(xi, tk ),k=1

j
∑



Matching filters 

•  The filter based measures typically has two steps 
–  Computing filter coefficients K 

–  Estimation of difference between computed filter and the 
identity map. 

 
•  The filter can be stationary or non-stationary 
•  The optimal transport based techniques Does this in one step 

–  Minimization is of a measure of transform K or as it is called 
transport 

K = argmin K ∗ f − g
L2

K − I



3. Optimal transport and Wasserstein metric 

•  Wasserstein metric  measures the “cost” for optimally transport 
one measure (signal) f to the other: g  – Monge-Kantorivich 
optimal transport measure  

g(y) f(x) 

Compare travel time distance 
Classic in seismology 

“earth movers distance” 
 in computer science 



•  The Wasserstein metric is directly based on one cost function 
•  Signals in exploration seismology are not as clean as above and 

a robust functional combining features of L2 and travel time is 
desirable 

•  Extensive mathematical foundation 

Optimal transport and Wasserstein metric 

f(x) 

g(y) 



Wasserstein distance 

 
•  Here the “plan” T is the optimal transport map from positive 

Borel measures f to g of equal mass 
•  Well developed mathematical theory, [Villani, 2003, 2009] 

Wp( f ,g) = inf
γ

d(x, y)p dγ (x, y)
X×Y
∫

⎛

⎝
⎜

⎞

⎠
⎟

1/p

γ ∈ Γ⊂ X ×Y, the set of product measure : f and g

f (x)dx =
X
∫ g(y)dy

Y
∫ , f , g ≥ 0

W2 ( f ,g) = inf
Tf ,g

x −Tf ,g(x) 2
2
f (x)dx

X
∫

⎛

⎝
⎜

⎞

⎠
⎟

1/2



Wasserstein distance 

f 

s 

g 

“distance” =  
s2(mass) 



Wasserstein distance 

•  In this model example W2 and L2 is equal (modulo a constant) to 
leading order when separation distance s is small. Recall L2 is 
the standard measure 

f 

s 

g 



Wasserstein distance 

•  When s is large W2 = s = travel distance (time),                
(“higher frequency”), L2

 independent of s 
•  Potential for avoiding cycle skipping 

f 

s 

g 



Wasserstein distance vs L2 

•  Fidelity measure 

L2
2 Function of displacement 

“Cycle skipping”  
Local minima 



Wasserstein distance vs L2 

•  Fidelity measure 

L2
2 W2

2 



Wasserstein distance vs L2 

•  Fidelity measure 

L2
2 W2

2 

This is the basic motivation for  
exploring Wasserstein metric 

to measure the misfit 
Local min are well known problems 



Wasserstein distance vs L2 

•  Fidelity measure 

L2
2 W2

2 

We will see that there are  
hidden difficulties in 

making this work in practice 
Normalized signal in right frame 



Analysis 

•  Theorem 1: W2
2 is convex with respect to translation, s and 

dilation, a, 

 
•  Theorem 2: W2

2 is convex with respect to local amplitude 
change, λ 

 
•  (L2 only satisfies 2nd theorem) 

W2
2 ( f ,g)[α, s], f (x) = g(ax − s)α d, a > 0, x, s ∈ Rd

W2
2 ( f ,g)[β], f (x) =

g(x)λ, x ∈Ω1

βg(x)λ, x ∈Ω2

#
$
%

&%
β ∈ R, Ω =Ω1∪Ω2

λ = gdx
Ω∫ / gdx

Ω1
∫ +β gdx

Ω2
∫( )



Remarks 

•  The scalar dilation ax can be generalized to Ax where A is a 
positive definite matrix. Convexity is then in terms of the 
eigenvalues 

•  The proof of theorem 1 is based on c-cyclic monotonicity 

•  The proof of theorem two is based on the inequality 

x j, x j( ){ }∈ Γ→ c x j, x j( )
j
∑ ≤ c x j, xσ ( j )( )

j
∑

W2
2 (sf1 + (1− s) f2,g) ≤ sW2

2 ( f1,g)+ (1− s)W2
2 ( f2,g)



Illustration: discrete proof (theorem 1) 

•  Equal point masses then weak limit for generl theorem 
alternative to using the c-cyclic propery 



Illustration: discrete proof 

W2
2 =min

σ
xο j − (x j − sξ )

j=1

J

∑
2

= σ : permutation( )

min
σ

xο j − x j
j=1

J

∑
2

− 2s xο j − x j( )
j=1

J

∑ ⋅ξ + J sξ 2
$

%
&
&

'

(
)
)=

min
σ

xο j − x j
j=1

J

∑
2

+ J sξ 2
$

%
&
&

'

(
)
), from xο j

j=1

J

∑ = x j
j=1

J

∑

→ xο j = x j →σ j = j



Noise 

•  W2
2 less sensitive to noise than L2 

•  Theorem 3: f = g + δ, δ uniformly distributed uncorrelated 
random noise, (f > 0), discrete i.e. piecewise constant: N 
intervals 

 
•  Proof by “domain decomposition”  
     dimension by dimension and standard  
     deviation estimates using closed  
     1D formula 

f − g
L2

2
=O (1), W2

2 f − g( ) =O(N −1)

f = f1, f2,.., fJ( )



Computing the optimal transport 

•  In 1D, optimal transport is equivalent to sorting with efficient 
numerical algorithms O(Nlog(N)) complexity, N data points 

•  In higher dimensions such combinatorial methods as the 
Hungarian algorithm are very costly O(N3), Alternatives: linear 
programming, sliced Wasserstein, ADMM 

W2 ( f ,g) = F−1(y)−G−1(y)( )dy∫
F(x) = f (ξ )dξ

x
∫ , g(x) = g(ξ )dξ

x
∫



Computing of optimal transport 

•  For higher dimensions fortunately the optimal transport related 
to W2 can be solved via a Monge-Ampère equation [Brenier 
1991, 1998] 

•  Recently there are now alternative PDF formulations 

W2 ( f ,g) = x −∇u(x)
2

2 f (x)dx
X
∫

⎛

⎝
⎜

⎞

⎠
⎟

1/2

det D2 (u)( ) = f (x) / g(∇u(x))
Brenier map T (x) =∇u(x)



4. Monge-Ampère equation and its 
numerical approximation 

•  Nonlinear equation with potential loss of regularity 
•  Weak viscosity solution u if u is both a sub and super solution 

•  Sub solution (super analogous) 

•  1D 

 
  

det D2 (u)( )− f (x) = 0, u convex, f ∈C0 (Ω)

x
0
∈Ω, if local max of u−φ, then

det D2φ( ) ≤ f (x0 )

uxx = f , φ(x0 ) = u(x0 ), φ(x0 ) = u(x0 ),
φ(x) ≤ u(x)→φxx ≤ f



Numerical approximation 

•  Consistent, stable and monotone finite difference 
approximations will converge to Monge-Ampère viscosity 
solutions [Barles, Souganidis, 1991] 

[Benamou, Froese, Oberman, 2014] 

det D2u( ) = uvjvj( )
j=1

d

∏
+

vj{ } : eigenvectors of D2u



5. Applications to full waveform inversion 

•  First example: Problem with reflection from two layers – 
dependence on parameters, with Froese.  

•  Robust convergence with direct 
     minimization algorithm (Simplex) 
     geometrical optics and positive f, g Offset = R-S 

t 

R S 



Reflections and inversion example 

W2 

L2 



Gradient for optimization 

•  For large scale optimization, gradient of J(f) = W2
2(f,g) with 

respect to wave velocity is required in a quasi Newton method in 
the PDE constrained optimization step 

•  Based on linearization of J and Monge-Ampère equation 
resulting in linear elliptic PDE (adjoint source) 

J +δJ = ( f +δ f ) x −∇(uf +δu)∫
2
dx

f +δ f = g(∇(uf +δu))det(D
2 (uf +δu))

L(v) = g(∇uf )tr((D
2uf )

•D2 (v))+det(D2uf )g(∇uf )⋅∇v = δ f



W2 Remarks 

+ Captures important features of distance in both travel time and 
L2, Convexity with respect to natural parameters  

+ There exists fast algorithms and technique robust vs. noise 
-  Constraints that are not natural for seismology 

 
•  Normalize: transform f, g to be positive and with the same 

integral 

f (x)dx =
X
∫ g(y)dy

Y
∫ , f , g ≥ 0, g > 0, M − A



Large scale applications 

•  Early normalizations: squaring, consider positive and negative 
parts of f and g separately – not appropriate for adjoint state 
technique 

•  Successful normalization – linear 

 
•  Efficient alternative to W2 (2D): trace by trace W2 (1D) coupled 

to L2 [Yang et al 2016] 
•  Other alternatives, W1, unbalanced transport [Chizat et al 2015], 

Dual formulation of optimal transport  
•  Normalized W2 + λL2 is an unbalanced transport measure, λ > 0 

!f (x) = ( f (x)+ c) / f (x)+ c( )dx∫ , !g(x) = ...



Applications Seismic test cases 

•  Marmousi model (velocity field) 
•  Original model and initial velocity field to start optimization 



Marmousi model 

•  Original and FWI reconstruction with different initializations:  
     W2-1D, W2-2D, L2 



Marmousi model 

•  Robustness to noise: good for data but allows for oscillations in 
“optimal” computed velocity, numerical M – A errors 

•  Remedy: trace by trace, TV - regularization 



Marmousi model 

•  Robustness to noise: good for data but allows for oscillations in 
“optimal” computed velocity, numerical M – A errors 

•  Remedy: trace by trace, TV - regularization 

W2 

W1 



BP 2004 model 

•  High contrast salt deposit, W2 - 1D, W2 - 2D, L2 



Camembert 



W1 example 

•  Example below: W1 measure and Marmousi p-velocity model   
[Metivier et. al, 2016] 

•  Similar quality but more sensitive to noise and ≠ L2 when f ≈ g 
•  Solver with better 2D performance 



W2 with noise 

•  Slightly temporally correlated uniformly distributed noise 



Remarks 

•  Troubling issues 
–  Theoretical results of convexity  based on normalized signals 

of the form squaring etc. but not practically useful   
(squaring: not sign sensitive, requires compact support and 
problem with adjoint state method) 

–  The practically working normalization based on linear 
normalization does not satisfy convexity with respect to shifts 



Remarks 

•  Linear scaling: misfit as function of shift, Ricker wavelet 

•  Function of velocity parameters: v = vp+ αz [Metivier et. al, 2016] 



Remarks 

•  New and currently best normalization 

 
•  Good in practice – allows for less accurate initial mode than 

linear scaling  
•  Satisfies our theorems  
     for c large enough  

!f (x) = f̂ (x) / f̂ (x)dx,∫ f̂ (x) =
f (x)+ c−1, x ≥ 0

c−1 exp(c f (x), x < 0

⎧
⎨
⎪

⎩⎪

!f

c−1
f



6. Conclusions 

•  Optimal transport and the Wasserstein metric are promising 
tools in seismic imaging 

•  Theory and  basic algorithms need to be modified to handle 
realistic seismic data 

•  Ready for field data, [PGS, SEG2017, North Sea] 


